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Abstract

Large Language Models (LLMs) have demon-
strated remarkable progress in utilizing tools,
but their closed-source nature and high infer-
ence costs pose limitations on their adaptabil-
ity, necessitating a valid method that leverages
smaller, open-sourced models. In this paper,
we introduce Toolink, a comprehensive frame-
work that performs task-solving by first creat-
ing a toolkit and then integrating the planning
and calling of tools through a chain-of-solving
(CoS) approach. We first validate the efficacy
of Toolink in harnessing the model’s creativity
and CoS ability on ChatGPT. Subsequently, we
curate CoS-GPT, a chain-of-solving dataset de-
signed for tool-using, and finetune the LLaMA-
7B model. It results in LLaMA-CoS, a pow-
erful open-source model with advanced tool-
planning and tool-calling capabilities. Evalua-
tion on diverse tasks from BIG-bench demon-
strates its CoS ability matches that of ChatGPT
while its performance surpasses the chain-of-
thought approach. Further studies highlight the
generalization of LLaMA-CoS to unseen tasks
and showcase its capability in using toolkits
not explicitly tailored for the target task, affirm-
ing its robustness in real-world scenarios. All
codes and data are released1.

1 Introduction

Large Language Models (LLMs) such as
Codex (Chen et al., 2021), ChatGPT (OpenAI,
2022), and GPT4 (OpenAI, 2023) have made
significant advancements in code generation, in-
context learning, and logical reasoning. However,
these models still face limitations in precise calcu-
lations and accessing up-to-date information (Patel
et al., 2021; Trivedi et al., 2022; Lu et al., 2022b).
To overcome these challenges, recent research has
focused on equipping LLMs with tools to enhance
their expertise and interpretability (Qin et al.,
2023). These tools, such as calculators (Cobbe

1https://github.com/qiancheng0/Toolink

Toolkit Generation

update_orientation()

multiply()

add()

subtract_time()

NavigationArithmetic MatrixDate

Chain-of-Solving

The useful tools are [Tool1] and 
[Tool2]. 
We first to use [Tool1] to 
achieve the <Perpose1>. 
And then we use the [Tool2] to 
achive the <Perpose2>. 

A B

Task Solutions

ChatGPT (Closed-Source Model)

LLaMa-CoS

ToolKit Training

Corpus

C

# Calling Codes
# Step 1: Call …
out1 = [Tool1](…)
# Step 2: Call …
out2 = [Tool2](…)
…

Figure 1: An illustration of Toolink. It decomposes the
tasks through toolkit creation, and solves the queries
through chain-of-solving (CoS). Toolink can be adapted
on open-source LLaMA for effective tool-using.

et al., 2021; Parisi et al., 2022; Schick et al., 2023),
search engines (Carlini et al., 2021; Thoppilan
et al., 2022; Schick et al., 2023), scratch pads (Nye
et al., 2021), calendars (Schick et al., 2023), and
image retrievers (Sheynin et al., 2022), empower
LLMs to access external resources, benefiting
various tasks including question-answering, math
calculations, and long-form generation. Recent
studies have also conducted some attempts to
leverage LLMs to plan and utilize these tools (Shen
et al., 2023; Lu et al., 2023; Liang et al., 2023). By
combining plans, decisions, and executions into a
pipeline, these frameworks aim to construct more
advanced and versatile NLP systems for improving
the performance of LLMs.

However, current tool-using pipelines heavily
rely on closed-source models with inaccessible pa-
rameters. It poses challenges particularly in the
following aspects: (1) Limited adaptability: The
closed-source nature of LLMs prevents them from
being easily finetuned, resulting in a lack of flex-
ibility to adapt to customized tasks according to
specific requirements. (2) Low efficiency and high
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inference cost: Many existing LLMs can only be
accessed online, which imposes limitations on the
inference rate and leads to high costs. (3) Pri-
vacy and security concerns: Each query must
be submitted to these closed-source LLMs to ob-
tain a tool-using solution, which raises legitimate
concerns regarding potential privacy breaches and
compromises in data security.

To address these challenges, we propose Toolink,
a comprehensive framework to boost the tool-using
ability of open-source LLMs with the help of the
tool-using capability of ChatGPT. As shown in Fig-
ure 1, it first decomposes the target task by creating
a toolkit for problem-solving, and then leverages
the model to use tools to answer queries in a chain-
of-solving (CoS) approach. Specifically, CoS is
further disentangled into two distinct aspects: CoS-
Planning, which selects useful tools from the cre-
ated toolkit and plans their usages based on the
specific query; and CoS-Calling, which focuses on
deriving the answer by calling the tools in code for-
mat according to plans. Finally, we employ Chat-
GPT to curate CoS-GPT, a training dataset that
aims to inspire the open-source model’s tool-using
capability through CoS. Specifically, we finetune
LLaMA-7B (Touvron et al., 2023) into LLaMA-
CoS, which is enabled with tool-using capabilities
by linking the created toolkit with the chain of
problem-solving.

LLaMA-CoS can solve the queries offline with-
out uploading queries to closed-source models, en-
suring data security and privacy. Experiments illus-
trate that Toolink outperforms the chain-of-thought
(CoT) (Wei et al., 2022) on diverse tasks from BIG-
bench (Srivastava et al., 2022) and enables LLaMA-
CoS to showcase comparable CoS ability to that of
ChatGPT. In addition, LLaMA-CoS can generalize
to unseen tasks by planning and calling tailored
tools, and solve the target task with a toolkit not
specifically tailored for it. These findings further
affirm our framework’s robustness in solving real-
world queries.

2 Related Work

Tool-based enhancement for LLMs. Language
models have been enhanced with external tools to
improve their expertise. Previous work focused on
equipping the LLMs with different tools including
calculator to improve calculation accuracy (Cobbe
et al., 2021; Parisi et al., 2022; Schick et al., 2023),
search engine to inquire factual knowledge (Car-

lini et al., 2021; Thoppilan et al., 2022; Schick
et al., 2023), Python interpreter to execute pro-
grams (Chen et al., 2022a; Gao et al., 2022), and
retriever to search textual information (Khandelwal
et al.; Borgeaud et al., 2022), etc.

More recent studies, such as HuggingGPT (Shen
et al., 2023), Chameleon-LLM (Lu et al., 2023),
VisualGPT (Wu et al., 2023) and TaskMa-
trix.AI (Liang et al., 2023), focus on assembling
plannings, execution, and logical reasoning on
tools into a robust pipeline. In addition to tool-
using, ART (Paranjape et al., 2023) builds toolkits
based on retrieved tasks from the manually built
library, while LATM (Cai et al., 2023) and CRE-
ATOR (Qian et al., 2023) involves the LLMs’ tool-
making ability to offload their reasoning burden
and raise task performance.

Adaptation of open-source models. One re-
search direction focuses on effective tuning of
open-source models, including the introduction
of lightweight modules such as Adapter (Houlsby
et al., 2019) and LoRA (Hu et al., 2021). These
modules are adapted to various model types in-
cluding LLaMA (Touvron et al., 2023), T5 (Raffel
et al., 2020), and other Transformers-based archi-
tectures (Pfeiffer et al., 2020), to save computa-
tional resources and improve effectiveness. For in-
stance, GOAT (Liu and Low, 2023) applies LoRA
to improve LLaMA’s arithmetic calculation abil-
ity, while LLaMA-Adapter (Zhang et al., 2023)
adopts Adapter and zero-init attention to improve
multi-modal task performance.

Other works have investigated how instruction
tuning can make open-source models better under-
stand and follow the instructions. Among these,
Flan (Longpre et al., 2023) explores the methods
of instruction tuning while InstructGPT (Ouyang
et al., 2022) further improves its effectiveness
with human feedback. More recent works also
extend instruction tuning to visual domains (Liu
et al., 2023) and leverage the LLMs to build the
instruction-following data to improve open-source
models (Taori et al., 2023; Peng et al., 2023).

3 Method

As shown in Figure 2, Toolink first adopts toolkit
creation to break down the target task through gen-
erating potential tools for task-solving (Sec. 3.1).
Then, the model links these created tools to ad-
dress specific queries by selecting pertinent tools
from the toolkit, planning their uses, and making
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# It takes the current location(x, y), 
# orientation(N, E, S or W), and steps, and
# returns the new location after action.

def update_orientation(orientation, turn_direction) 

# It takes the original orientation (N, E, S or W) 
# and turn direction(left, right or around),
# and returns the new orientation. 

def update_location(current_location, orientation, steps)

Toolkit Creation Chian-of-Solving (CoS) Tool Using

Figure 2: A problem solving chain of Toolink pipeline. We show an example from task Navigate. Toolink first
creates a toolkit generally applicable to the task, and then approaches the specific query through CoS, which involves
planning and calling of the created tools.

the final calling decision (Sec. 3.2). This process,
referred to as chain-of-solving (CoS), not only en-
ables the effective and coherent application of tools
but also facilitates the tool-using adaptation on the
open-source model (Sec. 3.3).

3.1 Toolkit Creation
Given the target task T , toolkit creation aims to
break down T into more manageable components
t1, t2, ..., tn through generating a toolkit KT =
{k1, k2, ..., kn} where ki(i ≤ n) represents the
tool to solve a subtask ti. This step tries to de-
compose a general task into modular and essential
tools for problem-solving, which facilitates more
flexible tool utilization.

Toolkit Making. For the task T , we utilize Chat-
GPT to decompose the task into different tools. We
feed the ChatGPT model with task meta informa-
tion IT and s publicly available target task samples
DT-sample ⊂ DT to create the toolkit KT :

Instruction + IT +DT-sample
ChatGPT−−−−−→ KT , (1)

where DT-sample ⊂ DT and DT consists of all
data points for the task T . Specifically, we first
involve clear instructions to demonstrate the toolkit
creation task for ChatGPT. Then we give the task
meta information IT and some instances DT-sample

to expect ChatGPT to better understand the objec-
tive of the given task T and identify commonalities

among queries, thereby successfully decomposing
T into more manageable units. More details are
showcased in Appendices A.

Note that our design only necessitates a limited
amount of s data points to be fed into the closed-
source ChatGPT, while leaving DT-remain = DT \
DT-sample to be processed locally to ensure privacy
is maintained (|DT-remain| ≫ |DT-sample|).

Tool Details. Each tool ki within the toolkit KT

is comprised of a concise introduction and its cor-
responding code implementation. The introduction
provides a brief overview of ki’s utility, inputs, and
outputs, facilitating effective planning and calling
in subsequent steps. In Figure 2A, the target task
T = Navigate is decomposed into t1 (movement
in a single direction) and t2 (change of orienta-
tion). Each component is represented by a spe-
cific implementation encapsulated within a tool
ki(i ∈ {1, 2}), which offers increased flexibility
when applying CoS for specific problem-solving.

3.2 Chain-of-Solving

Chain-of-Solving (CoS) involves dynamically se-
lecting useful tools Kuse from the created toolkit
KT for each query Q and planning their uses with
calling decisions. It links the potentially useful
tools in the created toolkit and is disentangled into
CoS-Planning and CoS-Calling, which facilitates a
more transparent and interpretable reasoning path



Category Set Name Source Number

Tool-Using Tool-Planning Augmented 4.4K
Tool-Calling Augmented 4.4K

Code
Generation

Python-Simple New 2.0K
Python-Specific New 2.0K

Math Augmented 2.5K
Algorithm Github 2.3K
LeetCode LeetCode 0.8K

Rectification Sources Above 1.6K

Total - - 20.0K

Table 1: The statistics about the sources and number of
data points in each category of CoS-GPT. Augmented
represents augmented from an existing dataset.

and enhances its applicability to open-source mod-
els.

CoS-Planing. Planning in CoS involves intelli-
gently selecting useful tools Kuse from a given
toolkit KT , and utilizing natural language based
reasoning chains (Plan) to determine how to em-
ploy Kuse to solve a specific query Q ∈ T :

KT +Q
ChatGPT−−−−−→ Kuse + Plan. (2)

In Figure 2B, the model devises strategies for em-
ploying tools to update the location and orientation,
with additional initial conditions that may serve
as a guiding hint later. Planning plays a crucial
role in establishing a link between toolkit creation
and decision-making, thus reducing the cognitive
burden associated with tool-use reasoning.

CoS-Calling. Calling entails utilizing Kuse and
interpreting the tool-using plans by regarding the
program language as a bridge. Plannings in the
previous step serve as guidance to generate the pro-
gram implements Impl{Kuse}. During execution,
all tool calling results will be implicitly captured
to generate the final answer A for query Q:

Q+Kuse + Plan ChatGPT−−−−−→ Impl{Kuse}
Exec−−→ A.

(3)
In Figure 2C, the model simulates the whole nav-
igation process leveraging code and derives the
ultimate correct answer, thereby exemplifying a
successful calling decision.

3.3 Open-Source Model Adaptation

The Toolink framework introduced previously
mainly stimulates a closed-source model, Chat-
GPT, to create and use tools. However, consid-
ering the limited adaptability, high inference cost,

and privacy concerns, we aim to transfer the CoS
ability of ChatGPT to open-source model Mopen

by tuning it properly. To this end, we introduce
CoS-GPT, a training dataset focusing on the plan-
ning and calling of tools as well as code generation,
all of which serve as the fundamentals in promot-
ing Mopen’s CoS ability. We denote CoS-GPT as
DCoS in the following and present its statistics in
Table 1. Additionally, for each target task T , we
utilize DT-sample to create a task-specific dataset
DT-tool, which augments each query with tools
and enables more effective training of task T on
open-source models, Mopen.

Construction of CoS-GPT. To enhance Mopen’s
skills in applying tools for problem-solving, we
construct DCoS from scratch to improve its CoS
ability from planning, calling, and coding. We
include the first two aspects as they are essential
for CoS within Toolink, and the last aspect as it
serves as the medium for tool-using.

For data points about planning and calling,
we enhance the existing AQUA-RAT (Ling
et al., 2017), GSM8K (Cobbe et al., 2021), and
TabMWP (Lu et al., 2022a) datasets by incorporat-
ing tools. These datasets consist of graduate-level
math problems, numerical reasoning tasks, and di-
verse table contents respectively. We augment each
query with a toolkit, which contains both the use-
ful and redundant tools for this specific query. For
planning, we aim to let Mopen select useful tools
Kuse from the toolkit and plan their uses. For call-
ing, we aim to let Mopen learn how to call Kuse in
codes to solve the problem. During data construc-
tion, we apply ChatGPT to simulate this process
and utilize their responses to construct the dataset.
Please refer to Appendices E.1 for more details.

The data construction for code generation
and understanding encompasses diverse sources,
including augmentation from existing datasets,
GitHub repositories, and newly generated data, de-
tailed in Appendices E.2. Each query adheres to an
instruction-following pattern and aims to enhance
Mopen’s understanding of code while expanding
its versatility in making informed decisions when
performing CoS.

Target Task-Specific Data. Suppose we have a
set of target tasks Tall. For each Ti ∈ Tall, we
construct 200 tool-augmented data points DTi-tool

(100 each for plan and call) from the publicly
available samples DTi-sample, and use them to tune



Mopen together with DCoS. Similar to the construc-
tion process for tool-using data in DCoS, we first
augment Ti with a toolkit KTi . Next, we employ
ChatGPT to select useful tools for each query and
generate the calling decision. The decision’s output
is compared against the standard answer, and minor
adjustments may be made to ensure the validity of
these newly-constructed tool-augmented data.

Finetuning of Model. Together with DCoS, we
apply the tool-augmented samples DTi-tool from
all target tasks to finetune Mopen:

Mopen

DCoS∪{DTi-tool
|Ti∈Tall}−−−−−−−−−−−−−−−→ Mtool. (4)

We expect the derived tool-augmented open-source
model Mtool to have the CoS ability to apply use-
ful tools in the toolkit for problem-solving. With
excellency in planning and calling, Mtool links the
created toolkit with specific queries, which realizes
the final goal of the Toolink framework.

4 Experiments

To evaluate the effectiveness of Toolink, we ini-
tially conduct a validation test utilizing the Chat-
GPT model. We select eight distinct tasks from the
BIG-bench dataset (Srivastava et al., 2022) to in-
vestigate whether Toolink can effectively leverage
ChatGPT’s creativity and tool-using capability to
improve task performance.

Subsequently, we perform finetuning on the
open-source LLaMA-7B model by following the
adaptation process outlined in Section 3.3. This
results in LLaMA-CoS, which links the created
toolkit with specific tool use through CoS. We then
assess the effectiveness of LLaMA-CoS in utilizing
tools on the same set of eight tasks and showcase
its excellence.

4.1 Validation Evaluation
Settings. In order to assess the effectiveness of
Toolink, we conducted a validation test utilizing
ChatGPT and select eight distinct tasks from BIG-
bench. The tasks include Arithmetic, Date Un-
derstanding, Matrix Shape, Navigate, Chinese Re-
mainder, Dyck Language, Boolean Expression, and
Tracking Shuffled Objects.

For each task, we initially employ ChatGPT in
the creation of a toolkit, outlined in Section 3.1.
We statistic the total number of tools in the toolkit
for each task and showcase it in Table 2. Appen-
dices B provide the specific tools for each task.

Equipped with these tools, the model is presented
with instructions and demonstration examples in
the chain-of-solving stage to guide it link tools for
problem-solving, detailed in Appendices C.

Baselines. We compare our approach against two
baselines: the Vanilla baseline, where ChatGPT
directly produces the final answer, and the CoT
baseline (Wei et al., 2022), where ChatGPT em-
ploys a chain-of-thought approach to produce the
reason chain for the query before providing an an-
swer.

Evaluation Methods. We explore the ability of
ChatGPT in leveraging plans and calls together
into a pipeline to perform CoS. The accuracy is
measured by matching the ChatGPT’s final output
to the correct answer.

To comprehensively analyze the individual con-
tributions of CoS-Planning and CoS-Calling, we
also evaluated their accuracy separately. For CoS-
Planning, the model is asked to only select useful
tools and plan their utilization given the query and
the created toolkit, as outlined in Formula 2. The
accuracy is measured by the following metric:

ACC = max{|Kcorrect| − |Kerror|
|Kcorrect|+ |Kerror|

, 0}, (5)

where |Kcorrect| denotes the number of correct
(useful) tools in the toolkit selected in the model’s
generated plan, while |Kerror| denotes the number
of erroneous (redundant) tools selected.

For CoS-Calling, the model is asked to imple-
ment the plan using code as the medium, given
the query and useful tools in the toolkit, as out-
lined in Formula 3. The accuracy is measured by
matching the output from the final execution with
the correct answer. For more details regarding the
separation of CoS-Planning and CoS-Calling tests,
please refer to Appendices D.

Results. The results are presented in Table 2.
ChatGPT that utilizes tools through the CoS ap-
proach achieves significantly improved perfor-
mance compared to other baselines, with notable
margins of superiority. Further, the accuracy for
CoS-Calling and CoS-Planning individually is even
higher, indicating successful reasoning in each step
of CoS which links toolkit creation with specific
uses. These findings affirm the validity of Toolink,
establishing a strong basis for its potential transfer-
ability to smaller, open-sourced models.



Task Arith. Date U. Matrix S. Navigate Chinese R. Dyck L. Boolean E. Tracking S. Average

Num. of Tools 5 3 5 2 2 4 2 4 3.38

Vanilla 77.78 68.67 40.90 65.16 0.0 19.40 80.70 23.67 47.03

CoT 79.44 68.67 80.46 87.96 0.0 19.42 75.88 40.78 56.58

CoS 100.00 69.28 93.67 85.30 95.14 52.46 97.37 99.11 86.54

CoS-Planning 100.00 66.16 95.18 94.78 100.00 74.58 95.39 99.85 90.74

CoS-Calling 100.00 90.96 97.44 88.44 95.67 98.55 93.42 100.00 95.56

Table 2: We first record the number of tools in the toolkit created for each task. Next, we demonstrate the accuracy
(%) of ChatGPT under different settings on 8 tasks sourced from BIG-bench. We report the results of Vanilla, CoT
baselines and our CoS method. We also report the performance of CoS-Planning and CoS-Calling separately.

Method Model Arith. Date U. Matrix S. Navigate Chinese R. Dyck L. Boolean E. Tracking S.

CoT
(Zero-shot,
w/ demo)

Alpaca 19.89 39.76 5.62 47.11 0.0 0.0 57.46 0.44
LLaMA-7B 39.44 33.73 12.58 39.70 0.0 2.90 50.44 14.22
ChatGPT 79.44 68.67 80.46 87.96 0.0 19.42 75.88 40.78

CoT (Tuned) LLaMA-CoT 50.44 49.40 70.82 71.64 0.0 35.27 62.72 28.44

CoS
(Zero-shot,
w/ demo)

Alpaca 17.78 7.83 3.00 48.60 7.56 1.00 94.74 6.78
LLaMA-7B 55.89 17.47 10.65 45.90 23.80 35.83 99.12 0.67
ChatGPT 100.00 69.28 93.67 85.30 95.14 52.46 97.37 99.11

CoS (Tuned) LLaMA-CoS 100.00 74.10 91.01 99.56 95.44 98.21 100.00 99.56

Table 3: The accuracy (%) on the 8 tasks sourced from BIG-bench. We report the baseline results from three models
including LLaMA-7B, Alpaca, and ChatGPT. LLaMA-CoS employs planning and calling of tools, which beats all
CoT baselines by large margins and is on par with ChatGPT’s CoS ability.

4.2 Experiments on LLaMA-CoS

Considering the limitations associated with the
closed-source models, our primary objective is
to extend Toolink to smaller, open-sourced mod-
els. Among these, the models from LLaMA fam-
ily (Touvron et al., 2023) stand out due to their
capability to perform reasoning, follow in-context
examples, and generate codes. Considering the
affordability of computational resources, we se-
lect LLaMA-7B as the representative base model
to evaluate the performance of Toolink on open-
source models.

Obtaining LLaMA-CoS. We follow the adap-
tation process outlined in Section 3.3 and fine-
tune LLaMA-7B with the CoS-GPT we intro-
duced (DCoS) and eight sets of task-specific tool-
augmented data (DTi-tool, 1 ≤ i ≤ 8). The eight
target tasks are the same ones we apply in Sec-
tion 4.1. Through the training detailed in Appen-
dices F, we derive a powerful variant, LLaMA-CoS,
that excels in using tools through CoS.

Settings. We utilize LLaMA-CoS as the repre-
sentative finetuned open-source model. Building

upon the validation test conducted on ChatGPT, we
further evaluate its performance on the same set of
eight tasks obtained from BIG-bench.

Baselines. As a comparison to CoS, we employ
the chain-of-thought (CoT) reasoning as the base-
line. We evaluate both methods under two sce-
narios: (1) zero-shot prompting with demonstra-
tions on Alpaca, LLaMA-7B, and ChatGPT, and
(2) normal finetuning specifically on the LLaMA-
7B model. We referred to the LLaMA-7B tuned
with CoT data as LLaMA-CoT, while our LLaMA-
CoS is tuned with data points specially designed to
enhance its ability to use the tools.

Results. We present the results in Table 3. No-
tably, LLaMA-CoS achieves an impressive average
accuracy of 94.74%, outperforming all the CoT
baselines, whether tuned or not, by a substantial
margin. Even compared to ChatGPT, which ex-
hibits strong reasoning and tool-using capabilities
under the CoS setting, our tuned model can still
achieve comparable performance. These results
highlight the effectiveness of CoS in outperforming
traditional CoT methods and demonstrate the suc-
cessful transfer of tool-using abilities from closed-
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Figure 3: The improvement of performance when code
generation data points are involved for each task.

source LLMs to smaller, open-source models.

4.3 Results Analysis

Excellence in Both Planning and Calling. To as-
sess the effectiveness of both planning and calling
during CoS, we conduct additional studies specif-
ically targeting these two aspects in Table 4. We
separate these two steps in the same way as we
described in the evaluation methods of Section 4.1.
Remarkably, our experimental results demonstrate
CoS-Planning and CoS-Calling separately surpass
the performance achieved by CoT-based models
on all tasks. Moreover, the accuracy of the com-
plete CoS pipeline is approximately equivalent to
the product of the accuracy of CoS-Planning and
CoS-Calling. These findings serve to validate the
model’s proficiency in performing well on each
individual step. Furthermore, they underscore the
critical role played by planning and calling in ensur-
ing the success of the whole CoS reasoning, thereby
providing evidence supporting the rationale behind
the development of the planning and calling steps
during CoS for effective tool-using under Toolink
framework.

Necessity of Code Training. To evaluate the im-
pact of code generation data, we compare the ef-
fectiveness of finetuned LLaMA-7B on the tasks
with and without code generation data points in
the base training set. The results, presented in
Figure 3, clearly indicate that our LLaMA-CoS
trained with code generation data achieves signifi-
cantly higher accuracy. On average, the inclusion
of code generation data leads to a performance im-
provement of approximately 1.4%. These findings
provide strong evidence supporting the necessity of
integrating code generation training when learning
tools and CoS ability. By incorporating code gen-
eration data, the model effectively learns to utilize
code as a medium for tool-using, which helps them

adapt to different scenarios with more flexibility
and ultimately results in enhanced performance.

Diverse Usage of Toolkit. We discover through-
out the experiments that LLaMA-CoS exhibits di-
verse CoS-planning and CoS-calling patterns for
tool-using. It is capable of sequentially calling
different tools to achieve a specific purpose, us-
ing tools based on the condition given through a
non-linear logic, or performing nested tool calls,
where the output from one tool directly serves as
the other one’s input. These abilities illustrate the
robustness and adaptability of LLaMA-CoS across
diverse scenarios. We provide three case studies
and more details in Appendices G and Figure 16.

5 Further Studies

In this section, we show the generalization of
LLaMA-CoS to novel tasks and how it can apply
CoS in using tools that are not specially tailored
for solving the target task. These studies aim to
show the robustness of LLaMA-CoS in utilizing
tools through planning and calling.

5.1 Generalization to Novel Tasks
The eight evaluation tasks (Srivastava et al., 2022)
we used in the previous experiment have all been
presented in the training data, even though we only
leverage a few tool-augmented publicly available
samples. To showcase the generalization ability of
LLaMA-CoS, we further test it on two new tasks:
FinQA (Chen et al., 2022b) and GSM8K (Cobbe
et al., 2021). FinQA involves question-and-answer
pairs based on financial report data, while GSM8K
focuses on grade school math problems.

Together with AQUA-RAT, MATH, and
TabMWP, whose data are presented in CoS-GPT
(detailed in Section 3.3), we randomly select a
maximum of 400 test data points from each of the
five tasks, and ensure they do not appear in CoS-
GPT. We augment each data point with a toolkit,
following the method outlined in Section 3.3
regarding how CoS-GPT is constructed. For the
experiment, we follow the CoS-planning and
CoS-calling test process outlined in the evaluation
methods of Section 4.1.

Table 5 presents the statistics and testing results
of LLaMA-CoS. We show that it achieves high
accuracy in both the tool-calling and tool-planning
steps, affirming the effectiveness and robustness of
its CoS ability for tool-using even when applied to
unseen tasks. These findings also emphasize the



Method Model Arith. Date U. Matrix S. Navigate Chinese R. Dyck L. Boolean E. Tracking S.

CoS-Whole LLaMA-CoS 100.00 74.10 91.01 99.56 95.44 98.21 100.00 99.56

CoS-Planning
(Zero-shot,
w/ demo)

Alpaca 18.22 27.41 24.15 77.16 100.00 76.3 97.59 99.37
LLaMA-7B 74.11 27.71 25.02 77.16 100.00 93.80 97.59 100.00
ChatGPT 100.00 66.16 95.18 94.78 100.00 74.58 95.39 99.85

CoS-Planning LLaMA-CoS 100.00 85.84 89.62 97.14 100.00 99.19 97.59 100.00

CoS-Calling
(Zero-shot,
w/ demo)

Alpaca 99.44 24.70 30.08 48.60 17.97 1.56 89.91 6.78
LLaMA-7B 74.70 51.20 55.49 43.77 24.81 25.67 94.30 1.56
ChatGPT 100.00 90.96 97.44 88.44 95.67 98.55 93.42 100.00

CoS-Calling LLaMA-CoS 100.00 91.57 95.56 98.88 94.18 98.55 95.61 88.44

Table 4: The accuracy (%) of CoS-Planning and CoS-Calling separately on 8 tasks sourced from BIG-bench. Results
show LLaMA-CoS has excellent ability in understanding and using tools through CoS.

Task In DCoS Count CoS-
Planning

CoS-
Calling

AQUA-RAT 139 59.80 56.12

MATH 400 65.83 50.75

TabMWP 400 90.00 66.00

FinQA 210 70.51 22.38

GSM8K 400 61.29 57.25

Table 5: The accuracy (%) of CoS-Planning and CoS-
Calling on five diverse datasets applying LLaMA-CoS.
DCoS represents the CoS-GPT dataset. Results show
LLaMA-CoS is robust to unseen tasks w.r.t. tool-using.

Task Toolkit Origin LLaMA-CoS ChatGPT

Dynamic
Cnt.

Raw 97.50 80.83
From Dyck L. 73.30 79.17

Unit
Interp.

Raw 70.83 80.83
From Arith. 65.83 80.00

Table 6: The accuracy (%) of ChatGPT and LLaMA-
CoS, with toolkit newly created for the target task (Raw)
or borrowed from other tasks. Our results show that
both ChatGPT and LLaMA-CoS can utilize tools not
specifically tailored for the target task through CoS.

generalization capabilities and the robustness of
LLaMA-CoS across diverse domains, showing
its wide applicability.

5.2 CoS on Generic Toolkit
We further explore the ability of LLaMA-CoS to
use generic toolkits instead of the one specifically
tailored for the target task. In real-world scenarios,
toolkits are usually designed to address tasks across
diverse domains, rather than tailored specifically
for a single task. We assume that LLaMA-CoS and
ChatGPT can also apply toolkits borrowed from
other tasks to solve target queries in a CoS ap-

proach and achieve comparable performance.
To validate our assumption, we source two addi-

tional tasks from BIG-bench: Dynamic Counting
and Unit Interpretation. For each task, we provide a
toolkit that is either created explicitly for the target
task or borrowed from another task. Specifically,
we pair Dynamic Counting and Unit Interpretation
with Dyck Language and Arithmetic, respectively.

We evaluate the performance of each setting us-
ing LLaMA-CoS and ChatGPT. The results pre-
sented in Table 6 indicate that both LLaMA-CoS
and ChatGPT can utilize a generic toolkit bor-
rowed from another task to solve target queries
through CoS. Though the performance still lags
behind using the toolkit specifically tailored for
the target task, these findings nevertheless confirm
our assumption that CoS has the ability to help in-
crease the robustness of tool-using, and make our
framework more applicable to real-world scenarios.
More details are shown in Appendices H.

6 Conclusions

We present Toolink, a tool-training framework
that effectively applies toolkits to solve problems
leveraging small, open-source language models.
Toolink offers increased flexibility in adapting to di-
verse downstream tasks while addressing concerns
related to high inference costs and privacy. Our
main contributions include (1) empirically imple-
menting a framework that can effectively leverage
open-source models’ tool-using ability, (2) devis-
ing the chain-of-solving (CoS) method that links
toolkit creation and uses through robust planning
and calling, and (3) releasing the CoS-GPT dataset
that enhances the model’s CoS capabilities.

Specifically, our LLaMA-CoS outperforms tradi-
tional CoT and achieves a comparable performance



to ChatGPT with respect to tool-using. We believe
our study provides a solid foundation and serves as
inspiration for future researchers to further explore
the potential of enhancing open-source models with
advanced tool-using capabilities.

Limitations

Our experiments focus on equipping the open-
source model with tool-using capabilities through
the CoS approach, specifically in planning and call-
ing, while excluding the ability to create toolkits.
This limitation arises from the fact that the LLaMA-
7B primarily relies on provided demonstrations and
lacks the internal creativity required for toolkit cre-
ation. Moreover, the absence of enough training
data further hampers the acquisition of this knowl-
edge. We acknowledge this challenge posed by
the transfer of the toolkit creation capability from
closed-source LLMs and leave it as an avenue for
future research.

Additionally, it is important to note that though
the tasks tested in our study include diverse toolk-
its and queries, they are mostly drawn from the
BIG-bench dataset. To gain a more holistic under-
standing of the generalizability of our results, it is
imperative for future research to expand the appli-
cation of Toolink to a broader range of scenarios.
This expansion would enable a more comprehen-
sive assessment of the framework’s efficacy and
applicability across diverse domains.

Ethics Statement

We consider the following issues in this paper:
• Privacy is a crucial aspect to consider when uti-

lizing closed-source models such as ChatGPT
and GPT4. These models have the potential to
learn sensitive information internally, posing a
risk to personal privacy. In contrast, Toolink ad-
dresses this concern by leveraging only a limited
number of publicly available samples for toolkit
creation, leaving the majority of testing queries
blind to closed-source LLMs. This approach
reduces the possibility of mishandling data and
safeguards user privacy. By minimizing the ex-
posure of sensitive information, Toolink miti-
gates the risks associated with privacy breaches
when compared to closed-source models.

• Transparency is a key aspect that aims to en-
hance the interpretability and comprehensibility
of AI systems from a human perspective. In our
framework, we prioritize transparency through

the creation of toolkits that provide clear infor-
mation about their utility, inputs, and outputs.
Additionally, we disentangle the CoS into sep-
arate steps of planning and calling, which in-
creases the interpretability of the model’s rea-
soning for users. We also encourage future re-
search to further document the specific scenarios
in which our framework exhibits its maximum
effectiveness, as well as to outline potential risks
involved. This will contribute to a more com-
prehensive understanding of our framework and
facilitate informed decision-making.

• Potential Bias is another critical aspect that we
prioritize addressing in our work. We acknowl-
edge that bias and discrimination can inadver-
tently manifest through problematic examples
present in the training data. To mitigate this
concern, we adopt a meticulous approach to cu-
rate the CoS-GPT dataset, which consists of
data points from various sources. We empha-
size diversity to minimize the presence of poten-
tially biased patterns during the data construc-
tion. Through these efforts, we aim to develop
the model’s tool-using and CoS ability that pro-
motes equitable and unbiased outcomes, foster-
ing trust and inclusiveness in the application of
AI systems.
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Appendices

A Prompt Pattern for ChatGPT Toolkit

We show the pattern of the prompt we apply for
the creation of toolkits leveraging GPT-3.5-turbo
in Figure 4. The temperature is set to 0.3 to ensure
the model clearly follows the instructions while
retaining its creativity to a certain extent. The max
length during generation is set to 1024. The prompt
shown mainly consists of the instruction for toolkit
creation, the demonstration of format, sample pub-
lic data, and the current tasks’ meta information.

B Toolkits for tasks from BIG-bench

We show in Figures 6 to 13 the toolkits that GPT-
3.5-turbo created leveraging the prompt mentioned
in the previous section. Notice that we show the
final version of the toolkit, which may contain cer-
tain modifications based on human feedback. For
instance, in Figure 8, we have integrated addition,
subtraction, and hadamard operation into one sin-
gle tool, as all of them do not change the shape of
the given matrix. This will effectively reduce the
redundant tools and help the model learn with ease.

C Settings for Chain-of-Solving

C.1 Choice of Instruction
To inspire the models’ ability to plan and call
the tools during chain-of-solving (CoS), we ap-
ply clear instructions to prompt the model. For
CoS-planning, we choose the instruction "You are
presented with a question and several tools that
may be useful. Select the useful tools and plan how
to solve the problem.", while for CoS-calling, we
choose the instruction "Use the tool given in the
input to write code to solve the problem.". This ap-
plies to all the settings, even for the LLaMA-CoS
because it is also tuned in an instruction-following
way.

C.2 Details about Demonstrations
For all the experiments leveraging ChatGPT, de-
spite the instructions, we also provide the model
with demonstration examples to showcase the for-
mat of planning and calling, as well as better lever-
aging its potential. The temperature is set to 0.3
during generation, and the max output length is set
to 1024.

For the raw LLaMA-7B and Alpaca baselines
without being tuned, the demonstration exam-
ples are also applied to provide guidance, while

the LLaMA-CoS tuned under our Toolink frame-
work does not need demonstration examples as it
is already tuned under the instruction-following
paradigm.

D Separating CoS-Planning and
CoS-Calling

In Toolink, planning and calling are combined as a
whole CoS process, where the plans generated by
the model are again fed back to itself to help guide
the generation of the final calling decision. To dis-
entangle their functions and better understand their
role, we employ tests to measure their accuracy
separately.

D.1 CoS-Planning Details

For the CoS-planning test, we provide the model
with the instruction and all the available tools in
the toolkit. In Figure 5, we showcase the format of
the CoS-planning prompt given to the model.

However, plans are generated in the form of nat-
ural language, whose accuracy is hard to measure.
For simplicity, we instead only measure if the cor-
rect tools are called upon to solve the given prob-
lem.

Suppose KT = {k1, k2, ..., kN} is the toolkit
with N tools for task T . For a specific query,
we denote the set of useful tools as Kuse ⊆ KT

and other redundant tools as Krdt ⊆ KT . Sup-
pose the set of tools called upon during planning
is Kcall ⊆ KT , then the correct tools called is
denoted as Kcorrect = Kcall ∩Kuse, and the erro-
neous tools called Kerr = Kcall∩Krdt. These are
the exact definition of the variables that we apply
in Equation 5.

If all the useful tools are called correctly and
precisely, where Kcall = Tuse, the accuracy will
be 1.00. Note that this metric is relatively strict
because wrong calls will result in the deduction of
accuracy.

D.2 CoS-Calling Details

For the CoS-calling test, the standard (correct)
plans will be provided to the model, instead of the
plans that the model previously generated. The
CoS-calling test solely aims to investigate the
model’s ability to follow plans and generate the
correct calling decisions. Besides the plans and
instructions, only the useful tools with respect to
the given query are provided in the prompt, instead



### Instruction:
You are asked to create a toolkit to solve the given task. Each tool in the toolkit should be a 
Python function that is helpful to solve the problems in the task. 
You will be given the related information about the task and the example queries to help you create 
the useful tools.
For each tool you create, please first state the tool’s name and its purpose, and then give its 
implementation using python code. Please wrap the code in ```python … ```. You can create 2 to 5 
tools for each task.

### Task 1
- Task Meta Information
The task asks the model to unscramble letters into a word. You should arrange the letters in correct 
order and output a valid English word.
- Sample Queries
1. Q: Please unscramble the letters into a word, and write that word: imitedl A: limited
2. Q: Please unscramble the letters into a word, and write that word: ermelonwat A: watermelon
3. Q: Please unscramble the letters into a word, and write that word: ttlebo A: bottle
Please create a toolkit including Python functions that are useful in solving the problem.
### Response
- Tool 1: 
permutations: this tool takes in a given string, generates all possible permutations of it, and 
returns them in a list.
```python
import itertools
def permutations(word):

perms = [''.join(p) for p in itertools.permutations(word)]
return perms

```
- Tool 2:
valid_word_lookup: this tool takes in a string, checks whether it’s a valid English word, and returns 
a bool value.
```python
import nltk
from nltk.corpus import words
def valid_word_lookup(word):

nltk.download('words')
english_words = set(words.words())
return word.lower() in english_words

```

### Task 2
- Task Meta Information
[Meta Information of the Target Task]
- Sample Queries
[Sample Queries for Toolkit Generation in QA Format]
Please create a toolkit including Python functions that are useful in solving the problem.
### Response

----------------------------------------------

----------------------------------------------

Figure 4: The pattern of the prompt given to GPT-3.5-turbo to generate the toolkit.

of all the tools from the toolkit. We showcase the
format of the prompt given to the model in Figure 5.

The accuracy of CoS-calling is based on the
matching of the model’s output to the correct an-
swer. For tasks Arithmetic and Chinese Remain-
der, the accuracy is evaluated in numerical format;
for Matrix Shape, the accuracy is evaluated based
on the matching of dimensions list; for all other
tasks from BIG-bench, the accuracy is based on
the matching of strings between the model’s output
and the correct answer.

E Dataset Construction

In this section, we provide more details about how
CoS-GPT is constructed. We introduce respectively

the construction of tool-using data (including plan-
ning and calling) and code generation data. All the
data points aim to enhance the open-source model’s
CoS ability.

E.1 Construction of Tool-Using Data

For each query in AQUA-RAT, GSM8K, and
TabMWP, we first utilize ChatGPT to create a di-
verse set of tools that are potentially relevant to
the given query, forming the toolkit. We then pro-
vide this toolkit to ChatGPT and allow it to select
the most suitable tools. Subsequently, we prompt
ChatGPT to generate decision calls based on the se-
lected tools and manually verify the correctness of
the resulting outputs. If the final answer is correct,



Prompt Format for Tool Plan:
### Instruction:
You are presented with a question and several tools that may be useful. Select the useful tools and 
plan how to solve the problem.
### Input:
- Question:
[Query from data]
- Available Tools:
1. [Name: Introduction about purpose, inputs, outputs]
2. [Name: Introduction about purpose, inputs, outputs]
...
### Response:

Prompt Format for Tool Call:
### Instruction:
[Query from data]
Use the tool given in the input to write python code to solve the problem.
### Input:
- Tool 1:
[Name: Introduction about purpose, inputs, outputs]
[Simplified Code Realization]
- Tool 2:
[Name: Introduction about purpose, inputs, outputs]
[Simplified Code Realization]
...
- Plan
[Plan from Model’s Tool Plan Response or the Standard (Correct) Plan]
### Response:

----------------------------------------

Figure 5: The format of the data (and prompt) for CoS-planning and CoS-calling.

we divide ChatGPT’s responses into two distinct
components, representing the planning step and the
calling step, which are then individually added to
the dataset. In this manner, the validity of our data
points can thus be guaranteed.

Throughout these steps of data construction, we
also incorporate demonstration examples sampled
from the constructed dataset, thereby expanding the
dataset in a self-iterative manner. Figure 5 show
detailed information about the format of the query.
Besides the query, we also provide the correspond-
ing CoS-planning or CoS-calling response and the
implementation of the toolkit with useful and re-
dundant tools.

E.2 Construction of Code Generation Data

The code generation data in CoS-GPT are sourced
from 6 different venues, including Python-Simple,
Python-Specific, Math, Algorithm, LeetCode, and
Rectification. The objective behind these cate-
gories is to enhance the model’s proficiency in
problem-solving through code utilization, calling
existing packages, applying reasoning, employing
algorithms, completing codes of challenging com-
petitions, and engaging in self-rectification.

For Python-Simple and Python-Specific, the for-
mer aims to boost the models’ ability to solve sim-
ple problems using codes, while the latter aims to

enhance the model’s ability to leverage code pack-
ages to solve more complex problems. Both these
two sets are generated using ChatGPT. We prompt
the model with instructions and demonstrations
and gather the code snippets the model generated
to solve the given problem.

The queries for the Math set are sampled from
the training set of MathQA (Amini et al., 2019)
and augmented with a code solution based on the
given query and reasoning, leveraging ChatGPT.
The generated programs are verified to ensure the
output answer is the same as the correct one origi-
nally, thus ensuring the validity of the augmented
data points. The Algorithm set is extracted from
the open-source Python algorithm repository, with
over 40 categories and more than a hundred diverse
algorithms. For each algorithm, we ask ChatGPT
to generate a query related to it and use a code
snippet to solve the problem. The codes and cor-
responding queries are then gathered and formed
into the instruction-following format.

For the LeetCode set, we directly extract the of-
ficial open-sourced problems and the code answers
from the website and form our data. The Rectifica-
tion set is gathered from the error codes generated
in the five sets before. The error tracebacks and
the bad code snippet is fed into ChatGPT, and we
leverage it to rectify the codes and generate a cor-



rect code snippet that can solve the given query
successfully. We gather the generated codes and
execute them again, retaining only the ones that
give a correct answer finally and form the set based
on these valid data points.

F Main Experiment Setting Details

For our main experiment, we finetune the LLaMA-
7B model on four A100-80G GPUs, with a total
batch size of 32 and a learning rate of 1e-5. For
the model whose performance we demonstrate in
Tables 3 and 4, its training dataset consists of 1.6K
target task-specific data points (8 tasks, 100 for
planning and 100 for calling each), 4K tool-using
data and 3K code-generation data randomly sam-
pled respectively from the CoS-GPT dataset. We
trained the LLaMA-7B on these data for 3 epochs
and obtain LLaMA-CoS.

In addition, for the ablation study about the train-
ing on codes we perform in Section 4.3, we ap-
ply 7K tool-using data and remove all the code-
generation data points. We keep all the other set-
tings the same in this study.

G Diverse CoS Patterns Case Study

In Figure 16, we present three case studies high-
lighting the diverse nature of LLaMA-CoS in ap-
plying planning and calling for tool-using.

Firstly, LLaMA-CoS exhibits the ability to gen-
erate sequential plans involving different tools. In
the first case, the model simulates the operation on
matrices step by step in a linear way and finally
gets the correct result.

Secondly, LLaMA-CoS demonstrates profi-
ciency in executing complex tool calls within
branch-loop structures. In the second case, the
model learns to use different stack operations based
on the character met in the expression, and can call
the useful tool in a loop structure.

Lastly, the model showcases its competence in
performing nested tool invocations. In the third
case, the model is able to directly pass the con-
verted hour retrieved from the previous tool as the
input parameter for the next tool, which illustrates
a successful nested tool call.

These examples serve to show the robustness,
versatility, and adaptability of LLaMA-CoS across
a wide range of scenarios.

H CoS on Generic Toolkit Details

We source two new tasks, Dynamic Counting and
Unit Interpretation, from the BIG-bench. We ap-
ply all the problems in Dynamic Counting for our
test of toolkit generalization. However, for Unit
Interpretation, we specifically select the data from
LV 1 in order for the tools from task Arithmetic
can be properly applied. To ensure fairness, we
expand the dataset by interactively sampling new
questions with similar patterns from ChatGPT and
incorporating them until the dataset reaches its orig-
inal full size. Note that we only aim to showcase
the toolkit’s generalization ability and compare the
performance of LLaMA-CoS and ChatGPT within
this paper, so we deem expanding the dataset as
fair and reasonable under our settings.

We show the toolkits specially tailored for these
two new tasks in Figures 14 and 15. The LLaMA-
CoS model we apply is still the model we have
trained in the main experiment, detailed in Ap-
pendices F. All the other settings, including the
ChatGPT applied under our framework, are kept
the same as that in the main experiment.



Toolkit for task: Arithmetic
- Tool 1: 
add: it takes in two numbers and returns their sum
```python
def add(a, b):

return a + b
```
- Tool 2:
sub: it takes in two numbers a and b and returns a - b
```python
def sub(a, b):

return a - b
```
- Tool 3:
mul: it takes in two numbers and returns their product
```python
def mul(a, b):

return a * b
```
- Tool 4:
div: it takes in two numbers a and b and returns the integer value of a / b
```python
def div(a, b):

return int(a / b)
```
- Tool 5:
mod: it takes in two numbers a and b and returns a % b
```python
def mod(a, b):

return a % b
```

Figure 6: The toolkit for task Arithmetic.



Toolkit for task: Date Understanding
- Tool 1: 
add_time: It takes in the start day in format MM/DD/YYYY, and calculate the date after y years, m 
months and d days. It returns a string in format MM/DD/YYYY.
```python
import datetime
def add_time(start_day, years=0, months=0, days=0):

start_date = datetime.datetime.strptime(start_day, "%m/%d/%Y")
new_date = start_date + datetime.timedelta(days=days)
if new_date.month + months > 12:

r = int((new_date.month + months) / 12)
new_date = new_date.replace(year=new_date.year + years + r, month=(new_date.month + months –

1) % 12 + 1)
else:

new_date = new_date.replace(year=new_date.year + years, month=new_date.month + months)
return new_date.strftime("%m/%d/%Y")

```
- Tool 2:
subtract_time: It takes in the start day in format MM/DD/YYYY, and calculate the date y years, m 
months and d days before this day. It returns a string in format MM/DD/YYYY.
```python
import datetime
def subtract_time(start_day, years=0, months=0, days=0):

start_date = datetime.datetime.strptime(start_day, "%m/%d/%Y")
new_date = start_date - datetime.timedelta(days=days)
if new_date.month - months <= 0:

r = int((new_date.month - months) / -12) + 1
new_date = new_date.replace(year=new_date.year - years - r, month=(new_date.month - months –

1) % 12 + 1)
else:

new_date = new_date.replace(year=new_date.year - years, month=new_date.month - months)
return new_date.strftime("%m/%d/%Y")

```
- Tool 3:
convert_hour: It takes the number of hours and convert it into days (integer).
```python
import math
def convert_hour(hours):

days = math.ceil(hours / 24)
return days

```

Figure 7: The toolkit for task Date Understanding.



Toolkit for task: Matrix Shape
- Tool 1: 
multiply: it takes in two lists representing the shape of two matrix, and returns the shape of their 
product.
```python
def multiply(shape1, shape2):

if shape1[1] != shape2[0]:
raise ValueError("Matrix shapes are not compatible for multiplication.") 

result_shape = shape1[:-1] + [shape2[-1]]
return result_shape

```
- Tool 2:
kronecker: it takes in two list representing the shape of two matrix, and returns the shape of their 
kronecker product.
```python
def kronecker(shape1, shape2):

if len(shape1) != len(shape2):
raise Exception("The number of dimensions of the two matrices is not equal")

result_shape = [dim1 * dim2 for dim1, dim2 in zip(shape1, shape2)]
return result_shape

```
- Tool 3:
sum_over_axis: it takes a list representing the shape of the matrix, and the dimension of the axis 
that is to be sum up. It returns the shape of the resulting matrix.
```python
def sum_over_axis(shape, axis):

if axis >= len(shape):
raise ValueError("Invalid axis dimension.")

result_shape = shape[:axis] + shape[axis+1:]
return result_shape

```
- Tool 4:
transpose: it takes a list representing the shape of a matrix to be transposed, and returns the shape 
of the resulting matrix.
```python
def transpose(shape):

result_shape = list(reversed(shape))
return result_shape

```
- Tool 5:
add_subtract_hadamard: it takes two lists representing the shape of two matrices for add, sbstract
and hadamard, and returns the shape of the resulting matrix.
```python
def add_subtract_hadamard(shape1, shape2):

assert shape1 == shape2
return shape1

```

Figure 8: The toolkit for task Matrix Shape.



Toolkit for task: Navigation
- Tool 1: 
update_orientation: It takes the original orientation(N, E, S or W) and turn direction(left, right or 
around), and returns the new orientation. It should be used only if not always face forward.
```python
def update_orientation(orientation, turn_direction):

orientations = ["N", "E", "S", "W"]
current_index = orientations.index(orientation)
if turn_direction == "left":

new_index = (current_index - 1) % 4
elif turn_direction == "right":

new_index = (current_index + 1) % 4
elif turn_direction == "around":

new_index = (current_index + 2) % 4
else:

raise ValueError("Invalid turn direction.")
return orientations[new_index]

```
- Tool 2:
update_location: It takes the current location(x, y), orientation(N, E, S or W), and steps, and 
returns the new location after action.
```python
def update_location(current_location, orientation, steps):

x, y = current_location
if orientation == "N":

new_location = (x, y + steps)
elif orientation == "E":

new_location = (x + steps, y)
elif orientation == "S":

new_location = (x, y - steps)
elif orientation == "W":

new_location = (x - steps, y)
return new_location

```

Figure 9: The toolkit for task Navigation.

Toolkit for task: Chinese Remainder
- Tool 1: 
divide_remain: it takes in a, b, and c, and checks if the remainder of a divided by b is equal to c.
```python
def divide_remain(a, b, c):

return a % b == c
```
- Tool 2:
check_validity: it takes into a list of possible answers, and filters the list of answers based on 
the upper bound x.
```python
def check_validity(answers, x):

return [answer for answer in answers if answer <= x]
```

Figure 10: The toolkit for task Chinese Remainder.



Toolkit for task: Dyck Language
- Tool 1: 
get_closing_parenthesis: This tool takes in an opening parenthesis and returns the corresponding 
closing parenthesis.
```python
def get_closing_parenthesis(opening):

openings = ['(', '[', '{', '<']
closings = [')', ']', '}', '>']
if opening in openings:

return closings[openings.index(opening)]
else:

return None
```
- Tool 2:
get_opening_parenthesis: This tool takes in an closing parenthesis and returns the corresponding 
opening parenthesis.
```python
def get_opening_parenthesis(closing):

openings = ['(', '[', '{', '<']
closings = [')', ']', '}', '>']
if closing in closings:

return openings[closings.index(closing)]
else:

return None
```
- Tool 3:
stack_insert: This tool takes in a stack and an element and returns the stack with the element 
inserted at the top.
```python
def stack_insert(stack, element):

stack.append(element)
return stack

```
- Tool 4:
stack_pop: This tool takes in a stack and returns the stack with the top element removed.
```python
def stack_pop(stack):

if len(stack) > 0:
stack.pop()

return stack
```

Figure 11: The toolkit for task Dyck Language.

Toolkit for task: Boolean Expression
- Tool 1: 
evaluate_expression: this tool takes in an expression as a string, evaluates it using Python's eval() 
function, and returns the result.
```python
def evaluate_expression(expression):

try:
result = eval(expression)
return result

except SyntaxError:
return "Invalid expression"

```
- Tool 2:
extract_valid_expressions: this tool takes in a string and extract the valid string that represents 
the expression.
```python
def extract_valid_expressions(question_string):

expression = question_string.split(':')[1].split('is')[0].strip()
return expression

```

Figure 12: The toolkit for task Boolean Expression.



Toolkit for task: Tracking Shuffled Objects
- Tool 1: 
create_object_dict: this tool takes in a list of people and their initial object, and returns a 
dictionary mapping each person to their object.
```python
def create_object_dict(people, objects):

object_dict = dict(zip(people, objects))
return object_dict

```
- Tool 2:
update_object_dict: this tool takes in an object dictionary, a list of object trades, and updates the 
object dictionary based on the trades.
```python
def update_object_dict(object_dict, trades):

for trade in trades:
person1, person2 = trade.split(' and ')
object_dict[person1], object_dict[person2] = object_dict[person2], object_dict[person1]

return object_dict
```
- Tool 3:
parse_trades: this tool takes in a string of trades and returns a list of individual trades.
```python
def update_object_dict(object_dict, trades):

def parse_trades(trades_str):
trades = trades_str.split('. Then, ')
trades[0] = trades[0].replace('At the start', '')
trades[-1] = trades[-1].replace('At the end', '')
return trades

```
- Tool 4:
get_final_object: this tool takes in a object dictionary and returns the object held by the target 
person finally.
```python
def get_final_object(object_dict, target_person):

return object_dict[target_person]
```

Figure 13: The toolkit for task Tracking Shuffled Objects.

Toolkit for task: Dynamic Counting
- Tool 1: 
get_closing_parenthesis: This tool takes in an opening parenthesis and returns the corresponding 
closing parenthesis.
```python
def get_closing_parenthesis(opening):

pairs_open = {'(': ')', '[': ']', '{': '}', '<': '>'}
if opening in pairs_open:

return pairs_open[opening]
else:

return None
```
- Tool 2:
find_open_remaining: This tool takes in a sequence of parenthesis and returns the single reamining
opening paraenthesis that is not closed.
```python
def find_open_remaining(parenthesis):

parenthesis = parenthesis.split(" ")
pairs_open = {'(': ')', '[': ']', '{': '}', '<': '>'}
pairs_close = {')': '(', ']': '[', '}': '{', '>': '<'}
stack = []
for p in parenthesis:

if p in pairs_open:
stack.append(p)

elif p in pairs_close:
if pairs_close[p] in stack:

stack.remove(pairs_close[p])
return stack[0]

```

Figure 14: The toolkit for task Dynamic Counting.



Toolkit for task: Unit Interpretation (LV1)
- Tool 1: 
same_ratio_calculate_first: This tool assumes that a : b = x : y. x is the first position. It takes 
in a, b and y and returns x.
```python
def same_ratio_calculate_first(a, b, y):

return (a / b) * y
```
- Tool 2:
same_ratio_calculate_second: This tool assumes that a : b = x : y. y is the second position. It takes 
in a, b and x and returns y.
```python
def same_ratio_calculate_second(a, b, x):

return (b / a) * x
```

Figure 15: The toolkit for task Unit Interpretation (LV 1).



Seqencial Tool Calling: Multiply a matrix of shape (2,2,2) with a matrix of shape (2,2,1). Add the
result to a matrix of shape (2,2,1). Compute the kronecker product of the result with a matrix of
shape (2,4,3). Sum the result over the second axis.

Toolkit Creation

First use [multiply] to calculate the shape of product.
Next use [add_subtract_Hadamard] to calculate the shape of sum.
Then use [kronecker] to calculate the shape of kronecker product.
Last we use [sum_over_axis] and pass axis=1 (first axis is 0, second is 
1) to calculate the shape of the resulting matrix.

CoS-Planning

CoS-Calling

multiply(shape, shape)

kronecker(shape, shape)

sum_over_axis(a, axis)

transpose(shape)

add_subtract_hadamard(shape1, 
shape2)

(a) Sequential Tool Calling.

Conditional Tool Calling: You are asked to to predict the closing parentheses of a Dyck-n prefix. 
What's the closing parentheses for prefix: < ( [ < [ ] > ] ( [ ( ) ] ?

Toolkit Creation

If we encounter an opening 
parenthesis, we use [stack_insert] to 
insert the parenthesis into the stack.

If we encounter a closing parenthesis, 
we use [stack_pop] to remove the 
top element from the stack. 

Finally, we use 
[get_closing_parenthesis] to get the 
closing parenthesis of the remaining 
elements in the stack.

CoS-Planning CoS-Calling

get_closing_parenthesis(opening)

get_opening_parenthesis(closing)

stack_insert(stack, element)

stack_pop(stack)

(b) Conditional Tool Calling.

Nested Tool Calling: Jane visits the bookstore on the 16th of each month starting from the
October of 2009. It is her 5th visit to the bookstore today. What is the date 24 hours later in 
MM/DD/YYYY?

Toolkit Creation
The starting day that she visits the bookstore is 10/16/2009. So I should use 
[add_time] to add 4 months to the October of 2009 to get the date today.
I am asked to calculate the date 24 hours later, so I should use [convert_hour]
to convert 24 hours into days and use [add_time] to add the days to today's 
date and get the target date.

CoS-Planning

CoS-Calling

add_time(start_day, years=0, 
months=0, days=0)

subtract_time(start_day, years=0, 
months=0, days=0)

convert_hour(hours)

(c) Nested Tool Calling.

Figure 16: Case Studies on the diverse CoS-calling patterns in the main experiment.


